
5

The process of acetone-butyl fermentation 
is associated with the transformation 
(oxidation) of the organic molecules of the 
substrate; consequently, the part of the 
energy is released and accumulated in the 
molecules of adenosine triphosphate (ATP) 
due to substrate phosphorylation [1–3]. As a 
rule, during fermentation, the carbon skeleton 
of the substrate molecule is split [4], and the 
fermentation products are formed, such as 
various organic acids (lactic, butyric, acetic, 
formic), alcohols (ethanol, butanol, propanol, 
acetone), as well as gases (carbon dioxide and 
hydrogen) [5]. In the process of fermentation, 

two stages can be distinguished — oxidative 
and reductive stage [6]. The oxidation process 
is based on the electron detachment from 
certain metabolites with the help of enzymes 
(dehydrogenases) and its attachment to other 
molecules (anaerobic oxidation) [7, 8]. The 
energy released during this process is stored 
in the form of ATP. The second stage is the 
reduction, in which the formed intermediate 
compound is reduced due to the transfer of 
electrons and protons to it from a temporary 
carrier. Reduced organic compounds are 
released by microorganisms into the external 
environment.
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The aim of this review was to generalize and analyze the features of acetone-butyl fermentation as a 
type of butyric acid fermentation in the process of obtaining butanol as an alternative biofuel. 

Methods. The methods of analysis and generalization of analytical information and literature sources 
were used in the review. The results were obtained using the following methods such as microbiological 
(morphological properties of strains), chromatographic (determination of solvent concentration), 
spectrophotometric (determination of bacterial concentration), and molecular genetic (phylogenetic 
analysis of strains).

Results. The process of acetone-butyl fermentation was analyzed, the main producer strains were 
considered, the features of the relationship between alcohol formation and sporulation were described, 
the possibility of butanol obtaining from synthesis gas was shown, and the features of the industrial 
production of butanol were considered. 

Conclusions. The features of the mechanism of acetone-butyl fermentation (the relationships between 
alcohol formation and sporulation, the duration of the acid-forming and alcohol-forming stages during 
batch fermentation depending on the change in the concentration of H2, CO, partial pressure, organic 
acids and mineral additives) and obtaining an enrichment culture during the production of butanol as an 
alternative fuel were shown. The possibility of using synthesis gas as a substrate for reducing atmospheric 
emissions during the fermentation process was shown. The direction of increasing the productivity of 
butanol-producing strains to create a competitive industrial biofuel technology was proposed.
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The present paper considers the stages 
of acetone-butyl fermentation as a type 
of anaerobic butyric acid fermentation, 
features of alcohol formation and sporulation, 
preparing an enrichment culture, butanol 
obtaining from synthesis gas, and selected 
aspects of industrial butanol production.

Acetone-butyl fermentation 
and butanol production

Acetone-butyl fermentation is a 
biochemical process of carbohydrates 
decomposition carried out by selected bacteria, 
which passes anaerobically (without oxygen 
access) and results in the formation of acetone, 
butyl alcohol, as well as acetic, butyric acids 
and fermentation gases, hydrogen and carbon 
dioxide.

There are several types of bacteria that 
are able carry out the process of butyric acid 
fermentation, e.g., in one of its subtypes, an 
acetone-butyl fermentation [9–11]. In butyric 
acid fermentation, glucose is oxidized to 
pyruvate via the glycolytic pathway, wherein 
pyruvate is further converted to acetyl-CoA. 
Acetone-butyl fermentation is carried out 
by microorganisms that belong to the genera 
Clostridium, Butyrvibrio, Butyribacterium, 
Sarcina, Eubacterium, Fusobacterium and 
Megasphera [3, 12].

The Clostridium genus belongs to 
the Bacillaceae family, together with 
other members of this family (Bacillus, 
Sporolactobacillus, Desulfotomaculum and 
Sporosarcina). Clostridia are gram-positive, 
spore-forming bacteria, their dimensions 
vary from about 2–3 to 7–8 μm in length and 
0.5–1 μm in width. Spore-forming anaerobes 
include giant vegetative cells, reaching 15–
30 μm in length and 1.5–2.5 μm in width. 
They are highly mobile due to peritrichous 
flagella. Vegetative cells are rod-shaped. 
However, their shape may vary depending on 
environmental conditions. Presence of the 
oval or spherical endospores changes the shape 
of the rod-shaped mother cell, since their 
diameter is usually greater than the width of 
this cell [13]. 

P h y s i o l o g i c a l l y ,  c l o s t r i d i a  a r e 
distinguished by a pronounced fermentative 
type of metabolism, as well as sensitivity to 
oxygen: their growth is possible only under 
anaerobic conditions. However, there are also 
transitional forms from strictly anaerobic 
species (C. pasteurianum, C. kluyveri) to 
almost aerotolerant ones (C. histolyticum, 
C. acetobutylicum). Clostridia, as a rule, 

do not contain hemoproteins (cytochrome 
and catalase). Some species are able to form 
cytochromes if their precursors are contained 
in the nutrient medium. Among the reserve 
substances, starch-like polysaccharides are 
widespread [14].

The temperature optimum for the 
growth of most known Clostridium sp. lies 
between 30 and 40 C. Along with those 
mesophilic microorganisms, there are many 
thermophilic species with an optimum 
of 60–75C (C. thermoaceticum and C. 
thermohydrosulfuricum). They are able 
to grow, as a rule, in a neutral or alkaline 
medium, and their growth almost completely 
stops in acidic conditions [15, 16].

Clostridia vary in their ability to ferment 
different substrates [17]. Some types of those 
microorganisms can ferment a wide range of 
different substrates, while others are highly 
specialized and are able to ferment only one 
or several types of raw materials (Fig. 1). 
Clostridia are able to convert polysaccharides 
(starch, glycogen, cellulose, hemicelluloses, 
pectins), organic acids, proteins, amino 
acids, heterocyclic compounds [18]. Selected 
microorganisms use complex nutrient media 
and/or growth substances, while others 
use molecular nitrogen as the only nutrient 
(C. pasteurianum) [19].

According to the ability to ferment various 
substrates, microorganisms can be divided into 
saccharolytic and proteolytic. Saccharolytic 
clostridia break down mainly mono- or 
polysaccharides, while proteolytic clostridia 
break down proteins and amino acids [20].

Butyric acid fermentation is mainly carried 
out by anaerobic microorganisms C. butyricum, 
C. tyrobutyricum, C. lactoacetophilum [22]. 
Their main fermentation products are butyric 
and acetic acids. Acetic acid fermentation 
of carbohydrates is observed in C. aceticum 
and C. thermoaceticum [23]. Propionic 
acid fermentation is inherent to C. propio-
nicum, resulting in the formation of propionic 
and acetic acid and carbon dioxide as main 
products [24].

The most active pectinolytic species are 
C. felsineum, C. laniganii, C. pectinolyticum, 
C. pectinovorum, C. virens, and other pigmented 
and non-pigmented clostridia and plectridium 
[25]. Each species has its own specific details of 
metabolism, but their common property is the 
ability to decompose pectin substances with the 
formation of organic acids, alcohols and gases.

Some microorganisms have very stable 
pectinolytic properties and secrete pectinolytic 
enzymes into the media not containing 
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pectins. In other anaerobes (for example, 
C. multifermentans), relevant enzymes are 
synthesized only when pectins are added 
to the media (induced enzyme synthesis) 
[26]. Pectinolytic anaerobes carry out the 
fermentation of sugars according to the 
butyric or acetone-butyl type. There is a group 
of highly specialized anaerobic spore-forming 
bacteria that obtain energy by fermenting 
cellulose with the fermentation end-products 
of acetic, propionic, butyric and lactic acids, 
ethyl alcohol, hydrogen and carbon dioxide, 
and intermediate products of glucose and 
cellobiose. For such bacteria, when glucose 
or sucrose is added to the nutrient medium, 
the fermentation process is practically 
absent (sugars are not assimilated), and when 
glucose and fiber are added simultaneously, 
mainly fiber is fermented. This indicates a 
high specialization of cellulose-decomposing 
microorganisms.

Cellulolytic bacteria differ not only in 
physiological but also in morphological 
features. Most cellulolytic spore-forming 
anaerobes have the appearance of thin long 
rods that form spores according to the 
plectridium type. Vegetative cells are usually 
present in an adsorbed state on cellulose 
fibers. Perhaps this is due to the fact that 
enzymes that hydrolyze cellulose (cellulases) 
are not released into the medium, but are 

attached to the cell surface. Spore-forming 
cells usually exist in solution; during spore 
formation, the nature of the cell connection 
with the environment changes, and spore 
formation occurs due to endogenous 
metabolism (due to intracellular nutrient 
reserves). Several specialized species of 
anaerobic bacteria have been identified that 
use organic acids and alcohols as a source of 
carbon and energy [27].

Microorganisms C. kluyveri, as a rule, 
obtain energy due to the conjugated oxidation-
reduction system of ethyl alcohol–acetic 
acid, thus higher fatty acids are formed 
(mainly caproic and butyric acids). Not all 
C. kluyveri bacteria are capable of fermenting 
carbohydrates, amino acids, and purines. The 
accumulation of energy through ATP in such 
anaerobes occurs through the mechanism of 
oxidative phosphorylation [28].

There are three types of bacteria 
(C. acidiurici, C. cylindrosporum and C. ura ci-
licum) that ferment heterocyclic compounds. 
They are able to destroy heterocycles with 
the formation of acetic acid, carbon dioxide 
and ammonia. The first two types of bacteria 
are not able to use carbohydrates and proteins 
(amino acids). These bacteria cleave xanthine, 
guanine, guanosine, 6,8-dioxipurine relatively 
quickly, and cleave hypoxanthine and inosine 
relatively slowly (even after adaptation) [29].

Fig. 1. Schematic of 1-butanol production in heterologous hosts from various feedstocks. Different colors 
represent heterologous genes expressed in different hosts [21]
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In spore-forming anaerobes, the specificity 
in relation to substrates is highly pronounced. 
The media containing a set of amino acids, 
carbohydrates, mineral salts, a complex of 
vitamins, and microbial growth activators 
may not be sufficient for selected proteolytic 
anaerobes (for example, C. sporogens) [30]. Such 
apparent heterotrophs grow only on the media 
containing proteins or products of their partial 
hydrolysis. However, there are anaerobes 
(sulfate-reducing bacteria) that ferment 
simple media, which include several mineral 
salts (including sulfates) and organic acid 
(atmospheric nitrogen can also be assimilated).

The ability to fix molecular nitrogen is 
widespread among spore-bearing bacteria. Such 
a process can be carried out by butyric, acetone-
butyl and sulfate-reducing bacteria. The 
most active nitrogen fixers are saccharolytic 
anaerobes (clostridia). The relation to oxygen in 
different physiological groups of spore-forming 
anaerobes is not the same. Saccharolytic 
anaerobes are more resistant to oxygen. Some 
representatives of this group are aerotolerant 
forms of C. carnis and C. histolyticum, capable 
of weak growth on agar plates even under 
aerobic conditions. Sulfate-reducing bacteria 
are sensitive to oxygen and difficult to culture. 
Their growth is possible only under anaerobic 
conditions without oxygen in the cultivation 
medium [30].

Alcohol formation and sporulation

The mechanism of the regulation of alcohol 
formation has not been fully elucidated [31, 
32]. This is especially relates to the switching 

phase of fermentation and the relationship 
between alcohol formation and sporulation 
(Fig. 2).

The spores represent specifically arranged 
resting germ cells that may withstand the 
action of high temperature, radiation, vacuum, 
various kinds of toxic substances and other 
unfavorable factors that lead to the death 
of vegetative cells. The formation of spores 
occurs at a certain stage of development at 
the moment when nutrient resources (sources 
of carbon and nitrogen) are exhausted in the 
environment, or toxic metabolic products 
accumulate [34]. The main purpose of spore 
formation is to transfer the culture to a resting 
(anabiotic) state, therefore, in mature spores, 
the metabolism occurs at extremely low level. 
This enables bacteria to survive in unfavorable 
environmental conditions, and when conditions 
change, they switch again to vegetative growth. 
For anaerobes (especially soil ones) it is also 
extremely important that the spores are not 
sensitive to oxygen. This allows them to survive 
under aerobic conditions that would have a 
detrimental effect on vegetative cells [35, 36].

Young, rapidly dividing anaerobic cells 
contain nucleoids in the form of dumbbells 
or V-shaped figures. Before sporulation, cell 
division stops, the cells sharply increase in 
size. At this time, an accumulation of a large 
amount of granulosa, a reserve nutrient, 
occurs, and it is being deposited in the form 
of granules, thus the cytoplasm becomes 
granular, and the cells swell, taking the 
form of a lemon (clostridium) or a drum stick 
(plectridium). In a minor part of proteolytic 
anaerobes cells do not change their original 

Fig. 2. The general cell cycle of Clostridium acetobutylicum depicting different cell forms and major 
products during acidogenesis and solventogenesis [33]
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appearance, retaining the usual rod-shaped 
(bacillary) shape [37]. The first sign of 
the onset of spore formation is a change 
in morphology. Further, several nucleoids 
approach at one of the poles of the cell, merge 
and form a longitudinally located convoluted 
chromatin (nuclear) strand. The cytoplasm 
zone, where the nuclear cord is located, turns 
into a prospore [38]. Small cell bacteria usually 
have two separate nucleoids before sporulation, 
which fuse to form an axial chromatin strand. 
Subsequently, only part of this thread goes into 
a spore. The third type of nuclear behavior is 
found in many saccharolytic anaerobes. Their 
nuclear substance has the form of a chromatin 
mesh located throughout the cytoplasm. Part 
of this mesh is pulled together at one of the 
cell poles with the formation of a strand, which 
forms the center of the emerging prospore. 
Using a conventional microscope, three stages 
of spore formation can be observed [39]. At 
the first stage the sporogenous appears zone 
at one of the cell poles, in which the nuclear 
substance in the form of light rods is clearly 
visible. At the second stage, the sporogenic 
zone turns into a dark (optically dense) oval 
prospore with clearly defined contours [40]. 
In the prospores, the nuclear substance is 
no longer detected without the use of special 
methods (staining). At the third stage, the 
prospores gradually lighten, acquiring the 
ability to strongly refract light, and lose their 
ability to stain with dyes. Ripe spores look like 
light, sharply refracting light bodies with a 
strong shell. Prospore formation begins with 
invagination (ingrowth) of the cytoplasmic 
membrane closer to one of the cell poles [41]. 
In this case, the membrane moves to the center 
of the cell, and its poles merge to form a spore 
partition wall (septum). This process involves 
mesosomes, which help to stick together 
the converging sections of the invaginated 
membranes. The septum consists of two 
elementary membranes. At this moment, the 
second stage of spore formation is finished 
(if we take the formation of a chromatin 
strand as the first stage). The second stage 
can be considered as a modified cell division, 
which, as is known, also occurs due to the 
invagination of the cytoplasmic membrane 
and a septum formation. The next stage is an 
“absorption” process by the mother cell of the 
septate (cut-off) area of the cytoplasm with 
the nucleus [42]. This process is carried out 
by the growth and advancing of the peripheral 
sections of the membrane in the mother cell 
towards the cell pole. Then the converging 
sections of the membrane merge and a prospore 

is formed, which has two elementary (three-
layer) membranes, internal and external. In 
some species, the prospore later remains at the 
cell pole (terminal location); in others, it moves 
inside the cytoplasm, occupying a central or 
subterminal position [43]. Thus, at the end 
of this stage, a kind of bicellular organism is 
formed: inside the cytoplasm of the mother 
cell, a new cell arises, a prospore, surrounded, 
unlike the mother, by two membranes. From 
this moment, a new irreversible phase of the 
development and metabolism begins, ending 
with the maturation of the spore and the death 
of the mother cell [44]. Unlike the fourth 
stage, the second and, in part, the third stages 
of sporulation are reversible. Thus, when, 
after the formation of a septum, the antibiotic 
chloramphenicol is added to the sporulating 
culture, protein synthesis will be suppressed. 
The movement of the peripheral sections of 
the membrane that absorbs the cut-off section 
of the protoplast will be stopped [45]. As a 
result, the process of spore formation that 
has begun will turn into a normal process 
of vegetative cell division, and cell wall 
material will accumulate between the two 
septa membranes. Such accumulation does 
not occur in the normal course of sporulation. 
At the fourth stage of sporulation, a cortical 
layer (cortex) is formed between the inner 
and outer membranes of the prospore [46]. 
First, the cortex appears as a thin dark layer, 
similar in structure and density to the cell wall 
of a vegetative cell. Then this layer sharply 
increases in thickness due to the formation of 
more electron transparent (light) layer. At the 
fifth stage, the spore shell is formed. At the 
beginning, the areas of a dark (electron-dense) 
substance in the form of scales appear around 
the prospore at some distance from the outer 
membrane of the prospore in the cytoplasm 
of the mother cell. At the sixth stage, the 
individual sheets of the shell elongate and, in 
the end, merge, forming a solid continuous 
dense layer. Between this layer and the outer 
membrane of the prospore, a cut-off layer of 
the cytoplasm of the vegetative cell remains 
[47]. On top of the first layer of the shell, one 
or two more layers can be deposited. In this 
case, they are divided into inner, middle and 
outer layers of the shell. These layers differ 
from each other in structure. In some species, 
the inner layer of the shell is lamellar, while 
the outer layer looks like a dense thick layer 
[48]. In other species, on the contrary, the 
lamellar layer may be external, and the denser 
layer may be internal. If the structure of the 
core is very similar in different species, then 
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the structure of the spore shells in them varies 
greatly both in fine structure and in the number 
and thickness of layers [49]. After the final 
maturation of the spore, the lysis of the parent 
vegetative cell occurs: the cell wall is destroyed, 
and the spore enters the external medium 
(seventh stage). The shape of mature spores 
can be different in different types of anaerobes: 
spherical, oval, ovoid, cylindrical [50].

In many anaerobes, another structure 
is found on top of the spore membrane, i.e., 
the exosporium. The exosporium has the 
appearance of a multilayer sheath, which 
the spore is located in. Such structure is 
observed in C. pasteurianum, C. bifermentans, 
C. tyrobutyricum [51]. In the exosporium of 
many anaerobic species, the layers contain 
subunits which are placed in specific order. The 
spherical subunits in the lamellar layer of the 
exosporium have a hexagonal packing. Adjacent 
subunits may sometimes fuse, forming ring-
shaped structures with pores in the center. 
Such exosporium layers comprise perforated 
membrane films. Exosporium occurs at an early 
stage of spore formation in the form of a small 
bubble on the outer membrane of the prospore. 
This vesicle grows, turning into a sheath 
covering the spore from all sides [52].

The core of the spore, surrounded by a 
layer of cortex, is a protoplast with its own 
membrane, nucleus, and cytoplasm. The core of 
a mature spore is a resting vegetative cell. It is 
characterized by a very low metabolic rate and 
although it contains all the necessary enzymes, 
their activity is somehow suppressed [53].

The cortex is composed of mucopeptides 
that are very similar to cell wall mucopeptides. 
The cortex also contains diaminopimelic 
acid. In spores, dipicolinic acid (C7H5O4N) 
is found in fairly large quantities. It is an 
active chelating agent, forming the claw-
like complexes with metals. This substance is 
absent in vegetative cells. Dipicolinic acid is 
released from spores in the form of calcium and 
magnesium salts, which play a major role in 
the thermal stability of spores. Dipicolinic acid 
is also involved in the process of transferring 
the spore protoplast to a dormant state [54]. 
The mechanism of these processes has not been 
elucidated yet. Possibly, dipicolinic acid is 
localized in the cortex, since there is a certain 
correlation between cortex formation and the 
accumulation of dipicolinic acid and calcium 
in the spore [55]. The cortex of mature spores 
plays a protective role. It protects the core 
from lytic enzymes that destroy cells. This 
assumption was confirmed for mutants that 
have lost the ability to form a cortex. At the 

final stage of spore formation, there is a sharp 
increase in the activity of lytic enzymes, which 
completely destroy the parent vegetative cell. 
Spores without cortex are also lysed [56].

The shell (or cover) is a unique structure 
of bacterial spore that is not found in other 
microorganisms. It mainly consists of protein 
substances enriched with cystine. The volume 
of the shell reaches 50% of the total spore 
volume. The substance of the spore shell is not 
sensitive to the action of various lytic enzymes. 
The shape of the spores, specific for each type 
of bacteria, is maintained due to the structural 
rigidity of the membranes. The shell also plays 
the role of a protective structure that protects 
spores from premature germination. Spores 
of mutant strains lacking the shell usually 
germinate immediately after emerging from 
sporangia in an environment unfavorable for 
growth (even in distilled water), which leads 
to the death of germinated cells. However, 
the role of the spore membranes, as well as the 
cortex, remains largely enigmatic [57].

The exosporium is a membranous structure; 
it often has a multilayer composition. The 
exosporium probably plays the role of a barrier 
that regulates the penetration of various 
substances into the spore. In many anaerobic 
bacteria, the exosporium is not a confined 
system, as its polar part, immersed in the 
cytoplasm of the mother cell, contains very 
large pores up to 0.5 μm in diameter. After 
mechanical removal of the exosporium, the 
spores remain normal, their germination process 
is not disturbed. A feature of spores in anaerobes 
is the formation of special outgrowths of various 
structure. Each type of anaerobic bacteria tends 
to have its own type of outgrowth structure. This 
feature is strictly specific, hereditarily fixed and 
very stable. Even in defective spores that have 
lost the ability to form a shell, the outgrowths 
are preserved and do not change their specific 
structure [58].

On C. taeniosporum spores, the outgrowths 
have a ribbon-like shape. A bundle of such 
outgrowths is attached to the spore with the help 
of a special organ — the pad. The outgrowths 
appear at an early stage of prospore formation, 
before the initiation of the cortex and shell; 
then they grow, lengthen, and penetrate the 
cytoplasm until they reach the opposite pole of 
the cell. The cytoplasm around the outgrowths 
gradually lyses. The mother cell is destroyed. 
On the free mature spores emerging from the 
sporangium, the outgrowths bloom in the form 
of an umbrella [59].

The spores of C. sporogenes have a single 
large and complex outgrowth. It has an 
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appearance of a long thick bundle or trunk, 
forming a ring at the end, from which antennae 
extend, a tubular rod-shaped outgrowths. 
The trunk has a coarse-grained structure and 
transverse striation, fine-grained antennae 
have a capsular layer. The formation of 
outgrowths in this species can be traced on 
intact cells [60]. At first, the processes are 
poorly visible, since they are surrounded 
by dense areas of the cytoplasm, then the 
cytoplasm becomes lighter and the outgrowths 
become clearly visible. A ring-shaped structure 
and antennae are clearly visible at one of 
the poles of the cell [61]. The function of 
outgrowths on spores has not yet been finally 
elucidated. Some researchers suggest that the 
outgrowths on spores are specific sensitive 
(chemosensory) organelles that give the spore 
a “command” for germination (under favorable 
conditions). Others believe that outgrowths 
play an important role in the process of spore 
maturation, participating in the formation 
of spore covers and the cortex. Some studies 
postulate that outgrowths on spores are 
the result of some disturbances in normal 
metabolism. The question of the enzymatic 
activity of outgrowths is very important [62].

When spores are transferred to a fresh 
nutrient medium they begin to germinate. 
Firstly, they swell, darken, then, through 
the hole formed in the spore shell, the young 
cell exits into the outer medium. In this case, 
the cortex layer is destroyed, and the spore 
shell, together with outgrowths (if any), is 
shed. In anaerobes, it is rarely possible to 
study the germination by observing the same 
single spore. At the last stage of the exit, the 
vegetative cell is blasted off. The hole in the 
spore shell is formed not strictly at the pole of 
the spore, but somewhat on the side, and the 
young vegetative cell, when exiting, is located 
at an angle to the long axis of the spore. In 
other anaerobes, the germination process may 
look different [63].

G e r m i n a t i o n  c h a r a c t e r i s t i c s  o f 
C. pasteurianum are used to differentiate this 
species from other spore-forming anaerobes 
[64]. Finally, three species of Clostridium, 
C. pectinovorum, C. butyricum, and C. tetani, 
differ in that their spores germinate inside 
the sporangium [65]. The cell wall (or 
part of it) in these species is not lysed, but 
remains on mature spores, covering them in 
the form of a sheath. But this sheath is not 
identical in origin and structure with the 
exosporium described above. C. acidiurici and 
C. cylindrosporum are physiologically very 
close, but clearly differ by morphological 

features. In the case of C. acidiurici, the spores 
are oval, located terminally, and the cells 
swell during sporulation [66]. In the case of 
C. cylindrosporum, the spores are cylindrical, 
located centrally or subterminally, and the 
sporangia do not swell [67].

Obtaining an enrichment culture

To obtain enrichment cultures of 
Clostridium, some of their features could 
be used. Their main feature is the thermal 
resistance of spores, which facilitates the 
isolation of microorganisms by the method of 
preliminary pasteurization of the inoculum 
[68]. To maintain the ability for intensive 
fermentation, pasteurized inoculums are used 
when working with isolated strains. Another 
feature is their anaerobicity or aerotolerance 
[69]. By creating strictly anaerobic conditions, 
the growth of all aerobic bacteria is excluded 
in advance. Strains can be isolated from soil, 
sewage, animal wastes, potatoes, roots of 
nitrogen-fixing legumes, milk, and cheese. 
When using a substance containing large 
particles as an inoculum, for example, 
starch grains or cellulose particles from 
the rumen of ruminants, those particles are 
firstly washed and then used as material for 
inoculation. Industrial strains isolated from 
natural sources are contained in different 
microorganism collections , such as ATCC 
(American Collection of Culture Types), DSM 
(German Collection of Microorganisms), 
NCIMB (National Collection of Industrial and 
Marine Bacteria, United Kingdom), NRRL 
(Northern Regional Research Laboratory — 
Agricultural Research Service Culture 
Collection, US Department of Agriculture) [70].

Most acetone-butyl bacteria share a similar 
phenotype, metabolic pathways, and end 
products. The taxonomy of these bacteria 
is quite complicated and time-consuming. 
Acetone- and butanol-producing strains are 
now divided into four species (Fig. 3), according 
to genetic features, namely C. acetobutylicum, 
C. beijerinckii, C. saccharoperbutylacetonicum 
and C. saccharobutylicum [71–73].

C. beijerinckii synthesizes solvents 
at approximately the same rate as 
C. acetobutylicum, but it synthesizes 
isopropanol instead of acetone [74, 75]. 
C. aurantibutyricum synthesizes isopropanol 
in addition to butanol and acetone [76]. 
The main source of carbon for the growth 
of C. tyrobutyricum bacteria is lactose, 
and the fermentation products are butyric 
acid, hydrogen, and carbon dioxide [77]. 
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C. tetanomorphum is a relatively new producer 
that synthesizes almost equimolar amounts of 
butanol and ethanol and does not synthesize 
other alcohols [78].

Clostridium  producer strains have 
different productivity and the end-product 
accumulation rates (Table 1). The accumulation 
of the corresponding products of microbial 
synthesis depends both on the strain itself and 
the cultivation medium, as well as on growth 
factors, pH, and temperature [79].

Production of butanol from synthesis gas

In addition to the classical scheme of 
ABE fermentation, it is necessary to note an 
alternative way of butanol production from 
synthesis gas using the C. carboxidivorans 
bacteria [81]. C. carboxidivorans binds CO, 
fixes CO2 and convert them into acetyl-CoA 
according to the Wood-Ljungdahl scheme 
(Fig. 4).

In this scheme, two CO2 molecules are 
used, but for completely different purposes: 
one molecule is used as a carbon source, and 
the second molecule is used as an electron 
acceptor. At the first stage, carbon dioxide is 
fixed with the help of tetrahydrofolate using 
the energy of ATP, and at the second stage, 
acetyl-coenzyme A (acetyl-CoA) is synthesized 
from CH3-H4-folate. The transfer of the 
methyl group to coenzyme A is carried out by 
a special methylase, a cobalt-containing iron-
sulfur protein.

Two processes take place in parallel:
The first process. CO-dehydrogenase 

(CODH) reduces the CO2 molecule to CO, and 
the electrons for reduction are usually taken 
from H2:

CO2 + 2 e– + 2H+ = CO + H2O.

The reduction of CO2 to CO occurs at 
the so-called Fe4NiS5-active center of the 
“C-cluster”protein. 

The second process. Acetyl-CoA synthetase 
condenses a carbonyl group with a methyl 
group at the so-called “A-cluster”, giving a 
metal-bound acetyl group, which is released 
from the enzyme via thiolysis by acetyl-CoA.

CO + H2O = CO2 + 2e– + 2H+         (1)

CH3-Co3+FeSP + CO + CoASH = 
= CH3C(O)SCoA + Co1+FeSP + H+           (2)

H+ + Co1+FeSP + CH3-THF = 
= CH3-Co3+FeSP + THF                 (3)

CH3C(O)SCoA + H4SPT + H2O = 
= CH3-H4SPT + CO2 +2e– + 2H+ + CoASH,            

(4)

where H4SPT is tetrahydrosarcinapterin, 
the archaeal analogue of tetrahydrofolate 
(THF). CoFeSP in reaction (2) is a corrinoid-
[FeS]-protein, a heterodimer containing the 
nucleotide cofactor cobalamin in one subunit 
and the Fe4S4 cluster in the other. Reduced 
Co1+cobalamin accepts the methyl group from 
CH3-THF in the reaction (3).

This process contains fewer steps, does 
not require organic seeds such as citric acid 
to initiate reactions, and carbon fixation in it 
occurs in only one reaction. In addition, the 
Wood-Ljungdahl pathway is the only way to 
fix carbon without the use of ATP or other 
triphosphates. It should be noted that all genes 
encoding enzymes in the classical scheme of 
ABE fermentation are present in the genome 
of C. Carboxidivorans, and the genome also has 
the sol operon and alcohol formation genes, 
which, for some reasons, are not included in 
fermentation. [83–85]. It is possible that the 
same genetic process had occurred here, as 
in the degenerated (DGN) strains which lost 
the ability to produce solvents after repeated 
cultivation. For C. acetobutylicum ATCC 824, 
the complete loss of the pSOL1 plasmid, which 

Table 1. Productivity of butanol-producing strains [80]

Note: * — The name of the type of fermentation directly characterizes the products of fermentation, for 
example, ABE — acetone-butanol-ethanol.

Strain Substrate Type of fermentation Solvent accumulation, g/l

Clostridium sp. BOH 3 Xylose АBЕ* 5.32; 14.94; 1.25

C. tetanomorphum DSM 665 Glucose Butanol-ethanol (BE) 9.8; 1.01

C. pasteurianum DSM 525 Glycerol Butanol-propanediol 7.13; 6.79

Clostridium sp.BT 10-6 Glucose Isopropanol 5.26

Clostridium sp.NJP 7 Glucose Isopropanol-methanol 12.21; 1.92

C. pasteurianum GL11 Glycerol Butanol-ethanol 14.7; 0.01
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Fig. 3.  Phylogenetic tree of 44 sequenced solventogenic clostridia [10]

Fig. 4. Scheme of the Wood-Ljungdahl pathway of C. carboxidivorans P7T [82]:
where 1 is formate dehydrogenase; 2 — formate-tetrohydrofolate ligase; 3 and 4, bifunctional 
methenyltetrahydrofolate cyclohydrolase/methylenetetrahydrofolate dehydrogenase (NADP+); 5 — 
5,10-methylenetetrahydrofolate reductase; 6–5-methyltetrahydrofolate:corrinoid/iron-sulfur protein Co-
methyltransferase; 7 — carbon monoxide dehydrogenase; 8 acetyl-CoA synthetase; CoFeSP is a cobalt-iron-
sulfur protein that catalyzes the transfer of a methyl group from tetrahydrofolate to coenzyme A and carbon 
reduced to (+2), CODH is an additional carbon monoxide dehydrogenase complex. The corresponding genes of 
the strain are shown below the enzyme
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contains the sol operon, consisting of the alcohol-
producing genes aad, ctfA, ctfB, and adc, was 
shown during the degeneration [86, 87].

One species of Clostridia, C. cylindro-
sporum, is able to generate formyl 
tetrahydrofolic  acid  formate  and 
tetrahydrofolate in a reaction that is 
accompanied by ADP phosphorylation. In 
this species, this reaction is the main way 
to obtain ATP. All reactions of substrate 
phosphorylation are localized in the cell 
cytosol, which suggests the simplicity of the 
chemical mechanisms underlying substrate 
phosphorylation. The degree of oxidation 
and the amount of free energy, as well as the 
nature of the products formed, are related to 
the nature of the final electron acceptors. In 
the process of fermentation, the final electron 
acceptors are mainly organic compounds: 
metabolites obtained from the original 
substrates (pyruvic acid, acetaldehyde), or 
the substances present in the cultivation 
medium. The main function of hydrogenases 
in Clostridia is to remove excess catabolic 
reactions of reducing equivalents (electrons) 
that have been produced and are removed 
from the cell in the form of molecular 
hydrogen. Other ways to obtain hydrogen are 
also possible. For example, NADH2, which is 
produced in the glycolytic pathway, can reduce 
ferredoxin with the help of NADH2: ferredoxin 
oxidoreductase, and H2 is released from the 
reduced ferridoxin by hydrogenase [88].

Features of industrial butanol production

It is not only the genetic features of 
the producer strain are a key factor in the 
microbiological synthesis of butanol; substrate 
(raw materials) and, in fact, the technology 
also make a major contribution into the cost of 
the final product.

By selecting a producer strain and an 
appropriate substrate, pretreatment of the 
substrate, optimization of technological 
parameters (pH, temperature, aeration, 
and nutrient supply), one can change the 
productivity of the producer organism 
and the accumulation of the final product 
[89]. The following microorganisms of the 
genus Clostridium are used in the industrial 
production of butanol: C. acetobutylicum, 
C. beijerinckii, C. saccharobutylicum and 
C. saccharoperbutylacetonicum.

Some species of Clostridia are characterized 
by an altered metabolic pathway of synthesis 
and, and consequently, the yield of solvents 
differs significantly from that obtained in 

classical ABE fermentation. In this regard, 
the selected producer strain must be checked 
using metabolomic analysis. The first stage of 
such an analysis is the performing of classic 
“direct” fermentation with subsequent study 
of all intermediates and final products. For 
fermentation, pure cultures of bacteria, or 
preliminarily prepared spores for inoculation 
are used [90].

Spore preparation is an essential and 
necessary step for cultivation in industrial 
production [91]. The accumulation of spores 
is carried out on a 6% mash of corn or rye 
flour. For the formation of spores, tubes 
with fresh sterile mash are inoculated with a 
culture of bacteria and the entire fermentation 
cycle is carried out at 37 C. Spores could be 
prepared by pouring as well. For each new 
portion, spores obtained from cultures that 
have shown the maximum results of product 
accumulation during fermentation under 
industrial conditions are used [92]. The first 
stage of fermentation is carried out in a vessel, 
from which the mash is poured into sterile 
test tubes where the process ends with the 
formation of spores. The tubes with spores are 
sealed and placed in a thermostat. After 18–60 
hours, the fermentation gases are released, the 
test tubes are sealed again and stored at room 
temperature. After two months of storage, the 
spores are tested by test-tube fermentation. 
The spores satisfying the technological 
conditions are recognized as suitable and the 
passports are issued for them [93].

After the accumulation of spores, ABE 
fermentation is carried out directly. It can 
be proceeded both in batch, semi-continuous 
and continuous mode. Batch fermentation is a 
relatively simple process [94].

Large amounts of pure culture are 
needed to carry out a batch process under 
industrial conditions. The preparation of the 
required amount of pure bacterial culture 
for production begins with the inoculation 
of spores in a pure culture apparatus (PCA) 
[95]. After 28 hours, the fermentation 
contents of the PCA are sterilely transferred 
to a large inoculator (LIN). Sterile mash for 
LIN is taken when it is hot. It is cooled in a 
LIN or refrigerator. From the inoculator, the 
bacterial culture is transferred under sterile 
conditions to the fermenter-activator of the 
production battery. In batch fermentation, in 
the first hours after inoculation of the mash 
with active culture, fermentation is observed, 
noticeable by gas release from the surface. 
Gas release peaked after 24–26 hours and 
subsided towards the end of fermentation. 
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During the period of maximum gas release, a 
characteristic stratification of the substrate 
occurred: a “loose” mucous layer moved 
upward to the surface, a cloudy opalescent 
liquid remained in the lower layer, and the 
entire medium acquired a yellowish color. 
This phenomenon in production is referred 
to as the “rise” of the mash and is one of the 
signs of normal fermentation. By the end of 
fermentation, the solid part of the substrate 
precipitated to the bottom.

Along with the gas release, the shape of the 
titratable acidity curve is also a characteristic 
feature of ABE fermentation. The growth of 
bacteria was characterized by the increase in 
titratable acidity, reaching its maximum (4.0–
4.6 mL of 0.1 NaOH per 10 mL of mash) by 
12–16 hours of fermentation, and then sharply 
decreased by 24–25 hours, after which there 
was a slight increase in acidity towards the end 
of fermentation. In the process of increasing 
acidity, the pH of the medium decreased 
from 6.0 to 4.1 and virtually remained at 
this level. The formation of alcohols began 
starting from approximately the 6th hour of 
fermentation, but become the most intensive 
after the “break” in the acidity curve. Up to 
35% of total carbohydrates were converted 
into alcohols, and the final mash contained 
about 2% of solvents. The cost of the substrate 
in the cost of butanol obtained by the classical 
method is 60%, which makes the process of 
obtaining butanol economically unprofitable 
[96–100].

To increase the accumulation of butanol 
in the process of “direct” batch fermentation, 
the duration of the acid-forming and alcohol-
forming stages can be changed by changing 
the concentration of H2, CO, partial pressure, 
organic acids and mineral additives. The 
addition of CO during the batch fermentation 
using C. acetobutylicum tends to inhibit 
hydrogenase activity [101]. During batch 
cultivation of C. saccharoperbutylacetonicum, 
it was demonstrated that the removal of 
hydrogen from the bioreactor leads to the 
accumulation of only H2, while alcohols did not 
accumulate [102].

Increasing the culture productivity is 
possible at the stage of metabolites formation. 
Artificial electron carriers such as methyl 
viologen and neutral red drastically change the 
production of metabolites. Microelements of 
the environment can also influence the electron 
transfer. The conversion of pyruvate to acetyl-
CoA involves the use of iron-sulfur proteins 
(ferredoxin oxidoreductases), and iron is also 
an important mineral supplement. A change in 

the iron concentration significantly affected 
the process of butanol synthesis [103–107].

A semi-continuous fermentation process 
was used to avoid fermentation inhibition 
by high substrate concentrations. However, 
due to the inhibitory properties of butanol, 
fed-batch culture is ineffective. In industrial 
production, a semi-continuous fermentation 
process is known as a battery fermentation. 
The battery consists of 6–8 bioreactors 
serially connected into an integral device. 
The main reactor (the activator) is inoculated 
with a culture from the inoculator and after 
the “break” of the acidity curve (after about 
12 hours) they are loaded with flour mash. 
The entire battery is filled through the 
activator. The battery is unloaded (the worth 
is transferred for rectification) from the last 
“tail” bioreactor. After sterilization, the “tail” 
bioreactor becomes the activator of the next 
battery, consisting of the same bioreactors, but 
loaded in the opposite direction. To optimize 
the semi-continuous fermentation process, 
the technological system for a continuous 
fermentation process was created.

Continuous fermentation made it possible 
to reduce (up to 70%) the flour usage and 
replace it with cheaper raw materials: sugar 
beet molasses (syrup) and hydrolysates of 
vegetable waste [108].

In this scheme, the use of flour mash for 
the first phase is preferred. This ensures the 
rapid growth of bacteria and the formation 
of enzymes for the synthesis of solvents. 
Molasses and hydrolysates are introduced 
during the transferring of the fermentation 
to the second phase. The scheme of continuous 
two-phase fermentation has been introduced 
into industrial production. According to 
this scheme, for the process of continuous 
ABE fermentation, an additional stage was 
proposed, a pure production culture apparatus 
(PPCA), which was sown from LIN. After 
10–12 hours of fermentation, the entire 
culture from it was transferred to the first 
bioreactor of the production battery, and its 
loading with flour mash had immediately 
began. The flour mash was transferred to the 
first (head) bioreactor of the battery, as well 
as for the further breeding of a pure culture 
in the inoculator and PCA. The molasses mash 
was sent to the second fermenter, where the 
transition to the second phase of fermentation 
took place.

This technology allowed the fermentation 
to continue for a long time and with a high 
productivity of the producer strain. The 
rate of butanol synthesis intensification in a 
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continuous process is similar to that for a batch 
process. An increase in butanol accumulation 
can also be obtained by adding precursors to 
the cultivation medium [109–113].

Conclusions

The features of the acetone-butyl 
fermentation mechanism (the relationships 
between the alcohol formation and sporulation, 
the duration of the acid-forming and alcohol-
forming stages during batch fermentation 
depending on the change in the concentration 
of H2, CO, partial pressure, organic acids 
and mineral additives) and obtaining an 
enrichment culture were shown. The possibility 
of synthesis gas use as a substrate for reducing 
emissions into the atmosphere during the 
fermentation process was demonstrated. 

The direction of increasing the productivity 
of butanol-producing strains to create a 
competitive industrial biofuel technology has 
been proposed.
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ОСОБЛИВОСТІ АЦЕТОНОБУТИЛОВОГО БРОДІННЯ 
ШТАМІВ–ПРОДУЦЕНТІВ БУТАНОЛУ
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Метою даного огляду узагальнення та аналіз особливостей ацетонобутилового бродіння як 
процесу отримання альтернативного біопалива — бутанолу. 

Методи. Застосовано методи аналізу й узагальнення аналітичної інформації та літературних 
джерел. Результати отримано з використанням мікробіологічних (морфологічні властивості штамів), 
хроматографічних (визначення концентрації розчинників), спектрофотометричних (визначення 
концентрації бактерій) та молекулярно-генетичних (філогенетичний аналіз штамів) методів.

Результати. Досліджено процес ацетонобутанолового бродіння, розглянуто основні штами-
продуценти, описано особливості взаємозв’язку спиртоутворення та споруляції, показано можливість 
отримання бутанолу із синтез-газу, розглянуто особливості промислового виробництва. 

Висновки. Показано особливості механізму ацетонобутилового бродіння (взаємозв’язок 
спиртоутворення та споруляції, тривалість кислотоутворючого та спиртоутворючих етапів за 
переодичної ферментації в залежності від зміни концентрації Н2, СО, парціального тиску, органічних 
кислот та мінеральних добавок) та отримання накопичувальної культури за отримання бутанолу, як 
альтернативного палива. Показано можливість використання синтез-газа як субстрата для зменшення 
викидів в атмосферу в процесі ферментації. Запропоновано напрямок збільшення продуктивності 
штамів-продуцентів бутанолу для створення конкурентноспроможної промислової технології 
бутанолу. 

Ключові слова: штами-продуценти, біопаливо біобутанол, ацетонобутилове бродіння.


