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Over the past few decades, a lot of the 
new information related to diphtheria toxin 
(DT) have appeared. However, in the most 
cases, not the DT itself was in the spotlight, 
but rather its derivatives. There are many 
different derivatives of DT obtained in cells of 
a natural producent, such as Corynebacterium 
diphtheriae. However, for several reasons, 
considerable attention is paid to recombinant 
analogs of DT. For the first, natural DT 
possesses one of the lowest values of semi-
lethal dose (LD50%) for sensitive cells among 
the other bacterial exotoxins [1]. The non-
toxic DT mutants allow carrying out the 
research work in a much more safe and 
convenient way, as they do not pose a threat 
to laboratory personnel and do not require 
the implementation of multiple biosafety 
means. On the other hand, recombinant 
derivatives of DT are much easier to obtain 
in the laboratory than native toxin and its 
fragments. Moreover, nowadays the methods 
of genetic engineering allow altering the 

molecules of studied proteins in a desired 
way. The most commonly used recombinant 
DNA approaches include introduction of 
desired mutations and additional amino acid 
sequences like a fused fluorescent label or a 
specific affinity tag, deletion of undesired 
amino acids, construction of the chimeric 
molecules which combine the necessary 
functions, etc. Sometimes, in order to study 
the function of individual structural parts 
of the whole protein, it is necessary to obtain 
some certain separate parts of its molecule. 
The wide possibilities and convenience of the 
modern recombinant DNA technology led to 
the almost complete replacement of DT natural 
mutants and fragments obtained by proteolytic 
cleavage by corresponding recombinant 
products. Most of these derivatives are used in 
the biological studies of native toxin functions 
and interaction with cells. 

Derivatives of DT are important tools for 
biomedical research, as well as for the most 
advanced biotechnological methods. For 
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example, a combination of the catalytic and 
translocation domain of DT is used for the 
creation of the targeted toxins, which are mainly 
used in cancer therapy. DT and its subunit A 
(SbA) are used for the specific ablation of the 
desired cell subtypes in multicellular organisms. 

In medicine, the most common application 
of the nontoxic derivatives of DT — is 
production of vaccines. For example, 
formalinized diphtheria toxoid (anatoxin) is 
a standard component of acellular vaccines 
against diphtheria infection. Besides this 
straightforward application of diphtheria 
toxoid, the non-toxic point mutant of DT, 
protein CRM197 is used as a carrier in 
conjugate vaccines, as this derivative like the 
native DT is highly immunogenic. But an even 
more surprising application of CRM197 is the 
therapy of oncological diseases — recently, 
such a medication as BK-UM [2–4] has been 
successfully introduced in cancer therapy. 

There are many other peculiar applications 
of DT derivatives, as well as outstanding 
questions relating to the biological functions 
of respective DT structural parts. The purpose 
of the present review was to summarize 
the current literary data on the variety of 
derivatives of DT molecule produced by 
the C. diphtheriae or either in heterologous 

systems, to analyze the main features, 
advantages and problems related to practical 
application of DT derivatives and provide a 
description of their current use in the fields of 
biology and medicine. 

Structure and functions of the native 
DT molecule. DT is produced by the gram-
positive cells of C. diphtheriae and some other 
Corynebacterium species [5]. It is known that 
the tox+ gene which encodes DT [6] is not 
a native part of Corynebacterium genome. 
The tox locus is present in the genomes of 
several bacteriophages [1]. Most often, this 
gene is introduced in C. diphtheriae with a 
corynephage  during lysogenic transformation 
[7, 8]. It is interesting that the synthesis of 
this foreign to bacteria gene is regulated by 
the system of bacterial host cells in response to 
environmental iron concentrations [9, 10]. 

The precursor of DT [11], is synthesized 
on polyribosomes in the form of a single-
chain polypeptide with the approximate Mr 
of 68 kDa. This precursor has a signal peptide 
on its N-terminus, that guides the toxin for 
cotranslational secretion in the extracellular 
environment by a bacterial Sec translocation 
system [12]. After the cleavage of the signal 
peptide during the process of translocon 
transfer, a mature DT is already formed (Fig. 1). 

Fig. 1. The elements of the secondary structure of secreted form of DT superimposed on the amino acid 
sequence in a single-letter code:

PDB code — 1GSK, according to [15] by UCSF Chimera software: -helices are highlighted by yellow, 
-strands — by green, non-structured regions are not highlighted , the area of the hinge loop which was not 

visible on the electronic density maps is marked by a red frame
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Mature DT is a single-chain protein 
of 535 amino acid residues with the SDS-
PAGE-estimated Mr of 62 kDa (58.342 kDa 
according to the theoretical calculations based 
on the gene sequence). This toxin contains 
no unusual amino acids and no non-protein 
moieties [13]. DT belongs to the A-B group of 
bacterial exotoxins, because the molecule of 
DT is traditionally divided into two subunits: 
A and B (SbB). Among the toxins of this group, 
DT was a first characterized member [1]. 
Division of DT molecule on subunits emerged 
historically, because during the proteolysis 
under mild conditions and in the presence of a 
reducing agent, the original molecule of toxin 
breaks up into these two parts. According to 
SDS-PAGE, SbA possesses the Mr of 24 kDa 
and SbB — 38 kDa. It should be mentioned 
that unlike SbB, SbA is characterized by an  
increased thermostability [14]. 

At the level of the tertiary structure, DT 
consists of a C-terminal receptor-binding 
or R-domain (residues 385–535), a central 
translocation or T-domain (residues 201–
384), and an N-terminal catalytic or C-domain 
(residues 1–191) [15]. SbA is represented 
only by the C-domain while SbB includes 
two domains: T- and R-. The fine structure 
of particular domains of DT molecule was 
investigated by X-ray diffraction in protein 
crystals (Fig. 1): the C-domain contains 
-helices and -strands, T-domain is entirely 
-helical and R-domain is a flattened -barrel 
with a jelly-roll-like topology, similar to that 
of the immunoglobulin variable domain [16]. 

DT contains four cysteine residues, which 
form two disulfide bonds: Cys186 – Cys201, 
and Cys461 – Cys471 [17]. The hinge loop 
that is formed by the disulfide bridge between 
Cys186 and Cys201 combines the C- and 
T-domains together. The second disulfide bond 
is located inside the R-domain. 

DT binding to its receptor on a plasma 
membrane triggers internalization of 
DT::receptor complex through the clathrin-
dependent endocytosis [18]. 

After DT binding to its receptor, 
transmembrane furin proteases at the surface 
of sensitive cells, cleave the peptide bonds 
that follows after residues Tyr190, Ala192 or 
Gln193 inside the hinge loop after DT binding. 
However, after such cleavage, C-domain 
is still remaining covalently tethered to 
B-subunit by a respective disulfide bond (the 
“nicked” or proteolytically cleaved toxin). For 
cytotoxicity, the mentioned disulfide bridge 
should be reduced to release the C-domain 
in the cell cytosol where it can implement 

its cytotoxic action. It is believed that this 
reduction occurs due to the glutathione GSH 
of cytosol [13]. 

When C-domain is released from the 
rest of the DT molecule, it is able to catalyze 
ADP-ribosylation of eukaryotic translation 
elongation factor 2 (eEF-2). The ADP-ribosyl 
group from NAD+ is transferred to the 
diphthamide residue (post-translationally 
modified histidine which is found in eEF2). 
This leads to an almost complete arrest of 
protein synthesis and cell death. It should be 
mentioned here, that entire DT which was not 
cleaved and treated with a reduction agent, 
is incapable of ribosyltransferase activity in 
cell lysates [14]. SbA is toxic for cells only in 
the presence of SbB, which is required for the 
binding to DT receptor, consequent uptake into 
endosomes, and translocation of fragment A 
into the cytosol [19]. 

Molecular mechanism of SbA translocation 
through the lipid bilayer is still unknown but 
it is obvious that T-domain which forms pores 
in lipid bilayers [20,21] is crucial at this step. 

Characterization of the DT receptor. DT 
receptor is the precursor of heparin-binding 
epidermal growth factor-like growth factor, 
proHB-EGF [22]. ProHB-EGF is a single-chain 
transmembrane glycoprotein of 208 amino 
acid residues [22, 23]. Significant amounts 
of this protein can be found on the surface of 
epithelial, endothelial, smooth muscle cells, 
fibroblasts, macrophages, etc [24]. ProHB-
EGF contains heparin-binding, EGF-like, 
transmembrane and cytoplasmic domains [25]. 

R-domain of the DT binds to the EGF-
like domain of proHB-EGF. Binding of DT 
to proHB-EGF is highly specific — the Kb 
of DT::HB-EGF interaction was estimated 
to be 10–8–10–9 M [26, 27]. The presence of 
proHB-EGF on the cell surface causes cellular 
sensitivity to DT. Cells that do not express 
the proHB-EGF on plasma membrane are not 
sensitive to DT. 

It is known that proHB-EGF forms 
complexes with some other membrane proteins, 
such as integrin 31, heparan sulfate-
containing proteoglycans and CD9 [28,29]. 
Tetraspanin CD9 is known to sufficiently 
enhance the DT binding activity of proHB-EGF 
[30–32]. 

It was found that mice and rats can tolerate 
relatively high doses of DT that are enough to 
kill susceptible animals (dogs) which are much 
larger in size and weight and with no necrosis 
occurred at the seat of inoculation [33, 34]. In 
cell culture experiments it was demonstrated 
that DT dose which reduces the rate of protein 
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synthesis by 50% is 105–106 times bigger for 
murine L929 cells than for human HeLa and 
KB-S cells [35]. 

Not all the rodents possess resistance 
to DT. Chinese hamsters and especially 
guinea pigs are sensitive to DT. Information 
on the resistance of other members of the 
mammalian class, as well as on the proHB-EGF 
polymorphism in various taxonomical groups 
of mammals is limited. 

The DT receptor from resistant and 
sensitive organisms possess a different 
primary structure due to the amino acid 
substitutions. It is obvious that differences in 
the amino acid sequence of proHB-EGF are the 
main reason for DT resistance in mammals, as 
murine cells which express human proHB-EGF 
also become highly sensitive [26]. However, 
there is no a definite opinion regarding how 
these differences in receptor structure alter 
the processes of DT binding and internalization 
by resistant cells compared to sensitive. 

According to one point of view, the 
receptors of insensitive cells are unable to 
bind DT [26, 35–39] which is the only reason 
for DT resistance. As to another opinion, DT 
binds proHB-EGF from insensitive cells and 
internalized by endocytosis [40–42]. According 
to the authors who found the endocytosis 
of DT by cells of resistant organisms, 
unsusceptibility to DT is due to the lack of the 
SbA translocation in the cytosol of resistant 
cells that may be caused by several factors: 
a low binding constant of DT to the HB-EGF 
receptor under low pH of endosomes [43, 44], 
high activity of endosomal proteases [40], etc. 

On the cell surface, proHB-EGF can 
undergo splitting by metalloproteases to form 
a soluble growth factor HB-EGF [45], which 
carries only heparin-binding and EGF-like 
domains (residues 106–147 of the proHB-
EGF primary translation product with signal 
and pro-peptides [24]). HB-EGF is a natural 
ligand for the EGF receptor and HER4 [46]. 
Soluble HB-EGF is a potential mitogen and 
chemoattractant for various cell types, 
including smooth muscle cells, fibroblasts and 
keratinocytes [47, 48]. This factor is involved 
in many physiological and pathological 
processes, which include the eyelid closure 
[49], wound healing [50–52], retinoid skin 
hyperplasia [53], cardiac hypertrophy [54], 
hyperplasia of the smooth muscle cells [55], 
collecting duct morphogenesis [56], blastocyst 
implantation [57], pulmonary hypertension 
[58] and oncogenic transformation [59]. 

Since the binding of DT to its receptor is 
very effective and highly specific (with the 

affinity that is close to that of an antigen-
antibody interaction), labeled DT derivatives 
are very perspective for detecting of this 
receptor in different biological samples and 
studies of internalization and intracellular 
transport of proBH-EGF [60]. 

Classification of DT derivatives. Now, 
when we have considered the structure of 
DT and its receptor, it’s time to get closer to 
a variety of its derivatives, which have some 
differences compared to the original toxin. 
Derivatives may be ranked according to their 
structural similarity to the natural toxin and 
in order of decreasing of their Mr. Compounds 
with practically the same Mr may differ in 
the number of amino acid substitutions. 
Derivatives may be classified by the presence 
of additional amino acid sequences and tags 
that are absent in the native toxin. 

Besides, all the derivatives can be divided 
according to some kind of their function: 
the presence or absence of toxicity, receptor 
binding, internalization, etc. 

I suppose that it is also necessary to 
distinguish between the DT derivatives that 
were obtained in the cells of the natural 
producer C. diphtheria and those derivatives 
that were synthesized in the foreign host cells. 
Such a division can be useful for systematizing 
the historical information on the obtaining of 
certain recombinant derivatives of DT, as at 
first DT derivatives were produced exclusively 
in C. diphtheria strains and lately — in 
heterologous systems based on Escherichia coli 
and other producents. 

Structure and functions of DT derivatives 
produced in C. diphtheria. According to [14], 
the lytic cycle of corynephage  — was induced 
in C. diphtheriae C7() strain by UV-light 
exposure and then nitrosoguanidine was 
added. The surviving phage particles produced 
in presence of the mutagen were plated on 
C. diphtheriae C7(–) cells, that does not contain 
prophage . Lysogenised corynebacteria from 
turbid plaques were spotted on agar and their 
toxinogeny was firstly estimated by the rabbit 
intradermal test. 

By this method, a number of non-toxigenic 
C. diphtheriae clones were found [14]. Obtained 
mutants produced the non-toxic proteins 
serologically related to DT. These toxoids were 
called “crossreacting materials” that contained 
single or multiple mutations in the tox+ gene 
that resulted in deletions or substitutions of 
individual amino acids in the polypeptide chain 
of DT. 

Among the obtained mutants, protein 
CRM197 [61] become the best-studied non-
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toxic DT analog of same Mr. Substitution of 
Gly 52 to Glu in this toxoid leads to an almost 
complete loss of SbA activity, however, 
there are also some data that mild activity of 
mutated SbA in CRM197 is preserved [62–64]. 
Despite the presence of a single mutation, 
there is a strong evidence that CRM197 has 
significant functional differences compared to 
the native DT [65–69]. 

Another DT mutants — CRM176 and 
CRM228 with same Mr as that of the native 
toxin, as well as truncated CRM45 (Mr of 
45 kDa) and CRM30 (30 kDa) were created 
together with CRM197. 

CRM45 includes residues 1–386 [70] that 
appeared as a result of the “TAA” termination 
signal introduced by the (C to T) point 
mutation in the “CAA” codon for Gln387 
which causes early termination at Thr386 and 
therefore — the C-terminal lost of 149 amino 
acid residues (Mr is 16.530 kDa). CRM30 
appeared similarly — by a transition of a sense 
codon to a stop codon. The C-terminal residue 
of this CRM is probably Ala280 [71], however 
unknown exactly. 

SbA of CRM228 has no transferase activity 
while the respective activity of CRM176 was 
approximately 2.6 times less than that of SbA 
from DT. Besides, CRM228 was also much 
less effective (10–15% of that of CRM197) in 
binding to the cell receptor, which indicates 
multiple mutations. The gene of CRM228 was 
sequenced [72] and 8 mutations in the mature 
form of CRM228 were revealed.

Among all the mutants described in work 
[14], CRMs 197 and 176 turned out to be the 
closest structural analogs of native DT, as they 
contain the single point substitutions — Gly to 
Gln at position 52 [70] for CRM197 and Gly 
to Asp at position 128 for CRM176. Mutation 
in CRM197 almost completely reduces its 
toxicity [14], thus, it became the most widely 
used and well studied non-toxic derivative of 
DT. However, a lot of another non-toxic CRMs 
were described in further works (Table 1) 
which contain substitutions in their C-domains 
and can be potentially used for the creation 
of another non-toxic single-point mutant by 
means of site-directed mutagenesis. 

Another set of 11 CRMs was obtained 
by nitrosoguanidine mutagenesis of 
-corynephage [73], among which CRM107 
was shown to selectively kill cerebellar 
Purkinje neurons [74]. Besides, CRMs 102 
and 103 were characterized, as they were used 
in the development of immunotoxins [75]. 
The sequences of the rest of the mentioned 
above proteins are unknown as the particular 

features of these mutants did not attract the 
attention of researchers. 

Some other CRMs produced in C. diphtheria 
possess the unique and potentially valuable 
properties. For instance, CRM26 is even 
smaller than CRM30 and represents SbA with 
a little bit more truncated T-domain [76, 77]. 
CRM1001 which possess the transition of 
Cys471 to Tyr in R-domain was also produced 
in C. diphtheria [78, 79]. CRM1001 was shown 
to bind the proHB-EGF of the target cells 
as well as DT but is deficient in cell entry 
resulting in a reduced toxic effect [78]. 

Recombinant DT derivatives produced 
in the foreign host cells. Only DT derivatives 
from the C. diphtheriae cells were listed 
above. However, production of proteins 
in their natural producers can be rather 
inconvenient. Recombinant analogs produced 
in heterologous systems are much more easy to 
obtain in the laboratory. Therefore, a variety 
of recombinant forms of DT were created.

Native tox+ gene of DT and some of its 
truncated forms were expressed in E. coli 
[80–82]. Perhaps, the creation of strains of 
E. coli with the native DT gene can be rather 
dangerous for humans and the environment. 
Moreover, it is noteworthy that due to the 
probability of a reverse mutation, production 
of the single-point full-length DT mutants can 
potentially provide the same threat. 

The gene of CRM228 was inserted in 
pKTHI637 vector and cloned in Bacillus 
subtilis cells for secretion in bacterial culturing 
media [83]. Two truncated forms of CRM228 
which contain no R-domain were also described 
in [83], from which one form contained the 
C-terminal cysteine residue for conjugation 
of chemical linkage of targeting molecules. 
Thus, it was demonstrated that this expression 
system with B. subtilis host cells is completely 
suitable for the production of the full-length 
and truncated toxoids and possibly, the entire 
DT molecules. According to the opinion of 
the author of this review, production of DT 
derivatives in the culturing media is the most 
reasonable biotechnological solution, because 
folding of the proteins, in this case, can occur 
in the most correct way. However, there is a 
report that production of proteolytically split 
CRM197 by B. subtilis may occur [84]. 

Some studies are devoted to the production 
of recombinant CRM197 in the T7 RNA 
polymerase-based expression system and E. coli 
as a host cell [85]. In this case, recombinant 
CRM197 is accumulated in the cytoplasm and 
most frequently — in the inclusion bodies [86, 
87]. In some cases, it was possible to obtain 



32

BIOTECHNOLOGIA  ACTA, V. 11, No 3, 2018

CRM197 protein in the soluble fraction of 
E. coli cell lysate [88, 89]. 

Recombinant SbB and SbA of DT — 
another well-studied DT derivatives. There 
are several studies in which for some reasons 
production of SbA [90, 91] or SbB [90, 92, 93] 
was established in E. coli. 

R-domain is the part of DT molecule of 
the smallest Mr which preserves the ability to 
bind the DT receptor. An attempt was made 
to obtain a mutated R-domain, the binding 
of which to the DT receptor would have an 
enhanced affinity [94]. Besides, R-domain 
was cloned in E. coli for the purposes of 
enhancement of bioavailability of curcumin to 
cells [95]. Curcumin, a perspective for cancer 
treatment secondary metabolite of plant 
cells is poorly soluble in water, however, it’s 
solubility can be effectively increased when 
it is adsorbed to protein and also R-domain. 
Cloning of R-domain was also described in [96] 

for characterization of its interaction with the 
DT receptor. 

Of the particular interest are fluorescent 
derivatives of DT fused to some fluorescent 
proteins (EGFP, mCherry, etc.), which were 
described in works [60, 97]. Such labeled 
fragments of the toxin molecule can be 
successfully used to study binding of living cell 
receptors, the expression levels of DT receptor,  
as well as its internalization by endocytosis in 
cells [43, 44, 98]. 

The information about the most important 
DT derivatives produced in foreign host cells is 
summarized in Table 2. 

Application of DT derivatives for studying 
the biological functions of native toxin. The 
most of DT recombinant derivatives with 
specific mutations and functional tags have 
been developed specifically to study the 
biological properties of the native toxin and 
the interaction of the eukaryotic cells with its 

Table 1. The most important DT derivatives which were produced in C. diphtheria cells

DT derivative Structure alterations Function alterations References 

CRM45 Deletion of the C-terminal portion 
Gln387 — Ser560

Loss of the receptor-binding activity, 
however weak cytotoxicity is pre-

served

[61, 70]

CRM30 Deletion of the unknown C-terminal 
portion, possibly Ala280 — Ser560

Loss of the receptor-binding activity, 
however weak cytotoxicity is pre-

served

[61]

CRM26 Deletion of the unknown C-terminal 
portion larger than in CRM30

Loss of the receptor-binding activity, 
however weak cytotoxicity is pre-

served

[76,77]

CRM228 Substitutions Gly79 to Asp, Glu162 
to Lys, Ser197 to Gly, Lys200 to Ser, 

Asn389 to Phe, Gly431 to Ser, 
Asn507 to Asp and Lys528 to Ser in 

C- and R-domains

Loss of the SbA catalytic activity and 
receptor-binding activity

[61, 72]

CRM197 Substitution of Gly52 to Gln in the 
C-domain

Loss of SbA catalytic activity [61, 70]

CRM176 Substitution of Gly128 to Asp in the 
C-domain

Partially reduced catalytic activity of 
native SbA

[61]

CRM107 Substitutions Leu390 to Phe and 
Ser525 to Phe in R-domain

Deficient binding to DT receptor, 
however selectively kills the Purkinje 
neurons, about 10 times less toxic to 
Vero and Jurkat cells than CRMs 102 

and 103

[73 75]

CRM103 Substitution of Ser508 to Phe in 
R-domain

Retained full enzymatic activity but 
had defective receptor binding, weak 

toxicity

[75]

CRM102 Substitutions Pro308 to Ser and 
Ser508 to Phe in T- and R-domains

Retained full enzymatic activity but 
had defective receptor binding, weak 

toxicity

[75]

CRM1001 Substitution of Cys471 to Tyr in the 
R-domain resulter in the absence of a 
disulphide bond between Cys461 and 

Cys 461

Preserving the ability to bind DT 
receptor, but deficient in the internal-

ization step of intoxication

[78, 79]
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molecules. For today all possible derivatives 
that have a certain defective function of the 
native toxin have been identified. For instance, 
a variety of mutations were introduced by site-
directed mutagenesis into the recombinant 
derivatives of DT in order to study the 
biological functions of various amino acid 
residues. Among them, there should be noted 
mutations in the active site of C-domain [99–
105] and T-domain [75, 106–115]. 

However, until now, the question regarding 
the mechanism of translocation of the 
subunit A DT to the cytosol through the lipid 
membrane remains unresolved. It is supposed 
that translocation of the polypeptide chain of 
the SbA moves through a protein-conducting 
channel, which is formed by a T-domain of DT. 
Recombinant T-domain and its pore-forming 
activity in lipid bilayers have been extensively 
studied in black lipid membranes [111, 116–
121]. In classical works on DT conductivity, 
it was suggested that at least two T-domains 
participate in the formation of a single pore 
[20, 21]. However, recently appeared a message 
that just a single T-domain is completely 
sufficient for the formation of a typical DT 
channel in black lipid membranes [122]. 

Nonetheless, the most unclear thing about 
the SbA transport is not how the translocation 
channel is arranged itself, but what is the 
force that pulls the polypeptide chain through 
this channel. There are some findings that 
lethal and edema factors of anthrax toxin 
could be translocated by a proton–protein 
symport through the channel which is formed 
by protective antigen, the third component 

of this toxin [123]. It is natural to assume 
that the polypeptide chain of subunit A can 
also be transported by a similar mechanism. 
Similar ideas were already presented in [20, 
124] and [125]. There are some findings that 
certain factors from the host cell can directly 
participate in the transport of SbA and possibly 
facilitate this process [126]. 

Specific cell ablation with DT and its 
catalytic domain. As it was already mentioned 
above, mice are resistant to the cytotoxic action 
of DT. Toxin-resistant animals survive when 
they are administered DT doses that lead to the 
death of cells in their organism that contain 
on their surface a receptor that is normally 
expressed only in sensitive species. This fact 
allowed the development a technique for specific 
ablation of cells in the body of transgenic mice 
using native DT — the toxin receptor-mediated 
cell knockout (TRECK) [127]. 

The first step of TRECK is generation of 
transgenic mice expressing human DT receptor 
under the control of a cell type-specific 
promoter. DT is injected into the transgenic 
mice at the desired time points to ablate those 
cells in which the promoter is active. One 
disadvantage of this method was that due 
to the high immunogenicity of DT, repeated 
injections which are necessary for complete 
cell ablation were ineffective. To solve this 
complication, the authors created a murine line 
with the immune tolerance against DT [127]. 
The receptor of DT deficient in epidermal 
growth factor-like biological activity but 
which preserves its ability of binding DT [128] 
was also created for this purpose to avoid 

Table 2. Fragments and analogs of DT molecule which were produced by cells of a foreign producents

DT derivative Host cells Specific features References

CRM197
E. coli Non-toxic DT analog [86–89]

B. subtilis Extracellular secretion, non-toxic [84]

CRM228 B. subtilis Extracellular secretion, non-toxic [83]

Truncated forms of CRM228 
with no R-domain (with and 
without C-terminal Cys resi-
due)

B. subtilis
Extracellular secretion of the C- and T-do-
mains combination for development of target-
ed toxins, non-toxic

[83]

SbA E. coli
Preserves catalytic activity, non-toxic (as it 
unable to translocate across lipid bilayer by 
itself)

[90, 91]

SbB E. coli Preserves receptor-binding and pore-forming 
activities, non-toxic [90, 92, 93]

T-domain E. coli Preserves pore-forming activity, non-toxic [111, 116–121]

R-domain E. coli Preserves receptor-binding activity, non-toxic [94–96]
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potential problems with DT receptor acting as 
a growth factor in mice. 

Specific cell ablation in multicellular 
organisms serves mainly to study the functions 
of certain cell populations which express a 
specific marker that is non-expressed in other 
cell types in the body of laboratory animals. 
TRACK was used for generation of a murine 
model of type 1 diabetes [129], a similar 
conditional cell ablation was used by another 
collective of authors for depletion of dendritic 
cells [130, 131]. A large amount of work was 
done by this approach to study the in vivo 
functions of murine myeloid cells [132]. 

Expression of active SbA directly in the 
cytoplasm — is another strategy for specific 
cell ablation [133–137] which does not require 
application of native DT. The gene of the 
SbA in cells of the transgenic organisms can 
be inserted under the controllable promoter, 
so that gene expression can be induced by 
a certain factor [134, 137] (conditional cell 
ablation), or the promoter can be activated 
by itself during ontogenesis only in certain 
specific types of cells [133, 136, 138] (non-
conditional, promotor-dependent ablation). 
The last approach is frequently used not only 
in animals but also in plant organisms to study 
the expression of certain genes in different 
plant cells [138].

Derivatives of DT as vaccine components 
Formalin-treated DT is a component 

in combined pertussis-diphtheria-tetanus 
vaccines (DTaP and Tdap) [139]. DTaP is a 
vaccine that helps children younger than 
age 7 develop immunity. Tdap is a booster 
immunization given at age 11 that offers 
continued protection from those diseases for 
adolescents and adults. 

The mechanism of formaldehyde 
detoxification is based on the reactivity of 
the carbonyl group regarding the primary 
amine groups on the protein (i.e. side chain 
of lysine and an N-terminal amino group of 
the polypeptide chain). During a reaction, 
a metilol intermediate is formed, which 
condenses with water to form a Schiff base. 
Then the Schiff base interacts mainly with a 
5-position of the tyrosine ring to form stable 
covalent methylene bridges. In detoxification 
protocols for vaccine production, the resulting 
Schiff-base is stabilized by glycine or lysine 
[140]. Manufacturing of the anatoxin for 
vaccination, which for the first glance has a 
very simple principle, is a highly standardized 
multi-week and multi-stage process that is 
carefully regulated. Resulted anatoxin is 
tested in numerous assays to ensure that the 

toxicity has been completely neutralized. For 
more than 100 years, since the production of 
anatoxins for vaccination was incepted, the 
standard protocol for DT, tetanus and pertussis 
toxins inactivation did not change much [140]. 
Recombinant genetically inactivated DT, 
tetanus and pertussis toxins were proposed for 
development of the next-generation of DTaP 
and Tdap vaccines [141, 142]. 

Conjugate vaccines are created by covalently 
attaching a poor antigen to a strong antigen 
thereby eliciting a stronger immunological 
response to the poor antigen. The strong 
antigen to which the target poor antigens are 
conjugated is called the carrier [143]. Diphtheria 
anatoxin, tetanus toxoid, and CRM197 are also 
used as carriers in several widely used, routine 
childhood and adult conjugate vaccines against 
encapsulated bacteria such as Haemophilus 
influenzae type b, Streptococcus pneumoniae, 
and Neisseria meningitidis [144, 145].

Derivatives of DT as anticancer agents 
The ability of native DT to inhibit the 

growth of malignant cells in resistant to toxin 
mice has been already known for a relatively 
long time [146]. The non-toxic to DT-sensitive 
species CRM197 turned out to be promising in 
applying to humans. It has been demonstrated 
that this toxoid effectively inhibits the growth 
of human malignant cells in vivo in nude mice 
model [147–149] and increases the survival 
of patients with progressive cancer [4, 150, 
151]. There is a lot of evidence that CRM197 
is effective in suppressing the cancer of breast 
[149, 152, 153], oral cavity [154], stomach 
[155], immune cells [156] and ovaries [147, 
148]. 

CRM197 was introduced into a medical 
practice for the treatment of human cancer 
as the main component of BK-UM medication 
[2–4]. Recombinant CRM197 was produced in 
E. coli which greatly facilitates obtaining 
of this protein for the manufacturing of 
diphtheria toxoid-based HB-EGF-targeted 
medications [86, 88, 89]. 

The effect of CRM197 on tumors is 
implemented by the interaction of this protein 
with soluble HB-EGF. It was demonstrated 
that proHB-EGF is often overexpressed in 
transformed cells and that HB-EGF promotes 
the development of a malignant phenotype. The 
gene of HB-EGF is considered to be strongly 
responsible for chemotherapy resistance 
[157] and oncogenic transformation [59]. 
Cell treatment with CRM197 leads to reduced 
malignant potential since when CRM197 is 
bound to HB-EGF is unable to interact with its 
cell receptor EGFR [155,157,158]. Nowadays, 
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it is generally accepted that the mechanism of 
the CRM197 antitumor action is blocking of 
the soluble HB-EGF. 

However, as a medicine for intraperitoneal 
administration, CRM197 possess an essential 
disadvantage, as, like the native DT, it is 
also highly immunogenic to humans. The 
anticancer potential of less immunogenic than 
CRM197 toxin derivatives was not studied 
properly.

DT-based targeted toxin therapy
Monoclonal antibodies specific for tumor 

cell surface antigens or their Fv-fragments 
have been linked to toxins or toxin subunits 
to generate a new class of therapeutic drugs 
called immunotoxins. Most often antibodies 
and their Fv to clusters of differentiation 
proteins 3 (mostly to CD3) [159, 160], 19 
[161, 162], and 22 [163, 164] are used as 
immunotoxin targets. The most known 
immunotoxin which is based on DT is 
Resimmune [165]. More information on DT-
based immunotoxins could be found in works 
[161, 162, 166, 167]. Another noteworthy 
immunotoxin, Moxetumomab pasudotox, was 
developed based on Pseudomonas aeruginosa 
exotoxin A (PE) [164].

Not only antibodies can be used for targeted 
toxin therapy — different ligands of the 
overexpressed receptors in cancer cells, like 
growth factors, hormones, cytokines and some 
other specific molecules can be employed as well. 

Sometimes, a complete DT molecule was 
combined with a targeting molecule [168,169]. 
Since only C- and T-domains are necessary for 
translocation of SbA, a variety of truncated 
fragments with no R-domain were obtained. 
At this point it should be noted that despite 
R-domain is absent in some DT derivatives, 
such fragments can still exhibit toxicity in 
certain cell cultures [170]. 

For substitution of R-domain instead of 
antibodies most commonly were used such 
factors as vascular endothelial growth factor 
[171, 172], -melanocyte-stimulating hormone 
[173], interleukin-2 [174], interleukin-3 [175–
177] and interleukine-13 [178], granulocyte-
macrophage colony-stimulating factor [179–
182], urokinase [183] and even transferrin 
[184]. In introduction to the medical practice, 
only interleukin-2 fused to the first 388 amino 
acids of DT (Denileukin diftitox or Ontak) was 
successful [185–188]. Interleukin-3 fused to 
the same DT fragment also demonstrated good 
results in clinical trials [189, 190], however, it 
was not introduced in cancer therapy. 

DT derivatives, used to construct the 
targeted toxins are also should possess a high 

immunogenicity, as they contain the sufficient 
part of DT molecule. 

Immunogenicity of DT derivatives. It 
remains unclear why DT possesses such strong 
immunogenic properties compared to other 
proteins. There is no detailed comparison of 
the immunogenicity of individual functional 
domains of the DT molecule, but attempts 
of such studies have been already done 
[191]. There are some not systematic data on 
immunogenicity of different fragments of 
DT [91, 192, 193] or on the immunodominant 
areas of DT surface [194], however, it is 
unknown exactly, which of functional domains 
is the most immunogenic. 

Investigation of the immunogenicity of 
individual fragments of the DT is valuable for 
medicine since CRM197 and DT fragments 
without R-domain for targeted toxins are 
repeatedly administered in cancer therapy. 

When immunogenic DT-based means 
administered repeatedly, they are fast 
eliminated from the bloodstream. Directed 
modification of DT [161] and PE [195–
198] is carried out in order to reduce such 
immunogenicity. 

Therefore, the search for DT derivatives 
that retain the most pronounced anti-tumor 
effects and possess the least immunogenicity is 
very perspective. Besides, it is also important 
to compare the immunogenicity between the 
variety of derivatives of other toxins (ricin, 
PE, etc.) used for targeted toxin therapy 
in order to find those that are the least 
immunogenic. 

In a biological study, DT derivatives are 
used to investigate the function of respective 
components of the entire toxin molecule. The 
least understood question concerning DT 
functions is the translocation of SbA through 
the lipid bilayers. The phenomenon of the 
resistance of some mammalian species to DT 
has found a peculiar application for a specific 
ablation of certain cell types in multicellular 
organisms. 

DT is excellent for use in vaccines, both 
anti-diphtheria and as a carrier protein for 
antigens of other pathogenic microorganisms. 
However, the use of DT in medicine is much 
broader.

Catalytically active SbA of DT complexed 
to the T-domain is used for the construction of 
recombinant means for targeted intoxication 
of cancer cells, like immunotoxins. The 
peculiarity of the anticancer effect of DT 
compared to other toxins of different origin is 
that its non-toxic derivatives, like CRM197, 
also exert the antitumor effect. Anticancer 
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properties of the non-toxic DT derivatives are 
explained by the involvement of DT receptor, 
which is inactivated by binding to a DT 
R-domain, in cancerogenesis and versatile range 
of other cell physiological functions. Therefore, 
in the anticancer therapy, it is necessary to use 
simultaneously both distinct functions of DT: 
toxic for directional cell elimination by targeted 
toxins and blocking of the soluble HB-EGF for 
reducing para- and autocrine activation of 
EGFR in malignant cells. 

Thus, DT is suitable for developing on 
its basis the newest biomedical products and 

biotechnological application for specific 
cell elimination, because it has one of the 
highest toxicity among other toxins and it is 
easy to obtain its active recombinant forms. 
However, the main obstacle in application 
of DT derivatives for the purposes other 
than immune prophylaxis, like cancer 
therapy and specific cell ablation — is high 
immunogenicity. Thereover, the search 
for the least immunogenic recombinant 
derivatives of DT is of a high importance for 
biomedicine.
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БІОЛОГІЧНІ ВЛАСТИВОСТІ ТА 
МЕДИЧНЕ ЗАСТОСУВАННЯ ПОХІДНИХ 
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Метою огляду був аналіз даних літератури, 
пов’язаних із практичним застосуванням різ-
номанітних похідних дифтерійного токсину. 
Дослідження взаємодії дифтерійного токсину 
з чутливими і резистентними клітинами ссав-
ців проводили вже протягом відносно тривало-
го часу, однак й дотепер існують деякі невирі-
шені проблеми, що стосуються молекулярних 
механізмів його функціонування. Нативний 
дифтерійний токсин і частини його молекули, 
які зберігають токсичність, використовують 
як інструменти у новітніх біотехнологічних 
методах специфічного знищення підтипів 
клітин у багатоклітинних організмах. Нові 
рекомбінантні похідні дифтерійного токсину 
періодично отримують у лабораторіях у всьо-
му світі. У біологічних дослідженнях аналоги 
дифтерійного токсину є зручними засобами 
для вивчення функцій природного токсину. 
Нетоксичний аналог дифтерійного токсину, 
протеїн CRM197, вже введено в клінічну прак-
тику як компонент вакцин і протипухлинний 
агент. Терапія спрямованими токсинами на 
основі дифтерійного токсину є потенційно пер-
спективною для лікування раку, тому вивчен-
ня його похідних має велике значення для біо-
технології та медицини. 

Ключові слова: клітинна абляція, CRM197, 
дифтерійний токсин, імуногенність, терапія 
спрямованими токсинами, токсоїд. 
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Целью обзора был анализ данных литера-
туры, связанных с практическим применением 
различных производных дифтерийного токси-
на. Исследования взаимодействия дифтерий-
ного токсина с чувствительными и резистент-
ными клетками млекопитающих проводили 
в течение относительно длительного времени, 
однако до сих пор существуют некоторые нере-
шенные проблемы, касающиеся молекулярных 
механизмов его функционирования. Нативный 
дифтерийный токсин и части его молекулы, 
которые сохраняют токсичность, используют 
в качестве инструментов в новейших биотех-
нологических методах специфического унич-
тожения подтипов клеток в многоклеточных 
организмах. Новые рекомбинантные произ-
водные дифтерийного токсина периодически 
получают в лабораториях по всему миру. В 
биологических исследованиях аналоги дифте-
рийного токсина представляют собой удобные 
средства для изучения функций природного 
токсина. Нетоксичный аналог дифтерийного 
токсина, протеин CRM197, уже введен в кли-
ническую практику как компонент вакцин и 
противоопухолевый агент. Терапия направ-
ленными токсинами на основе дифтерийного 
токсина является потенциально перспективной 
для лечения рака, поэтому изучение его произ-
водных имеет большое значение для биотехно-
лоии и медицины. 

Ключевые слова: клеточная абляция, 
CRM197, дифтерийный токсин, иммуноген-
ность, терапия направленными токсинами, 
токсоид. 




